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The bending of a plate with a rigidly clamped edge is studied. The 
contour which foras the boundary of the middle cross-section has a 
corner point whose aperture angle is 2a. The effects of the boundary 
layers, namely of the plane layer (near the smooth part of the side 
surface Sk) and the three-dimensional layer (near the characteristic 
line on Sk) layer are compared. When a<n, the plane boundary layer 
predominates, while when a=~ the three-dimensional layer predominates. 
The latter consists of a linear combination of two special solutions Y* 
of the homogeneous problem in a wedge of unit thickness. Several terms 
of the asymptotic expansion of the displacement and stress fields in a 
plate are described and the residues are estimated. In case of a 
re-entrant corner, the terms in the asymptotic representation of the 
plate deformation energy are determined, taking into account the general 
effect of the three-dimensionality. When compared with the case of a 
smooth side surface, expressions appear containing the squares of the 
coefficients of the singular terms of the Kirchhoff solution and factors 
in expansions of the solutions I'* at infinity. 

1. Fornrutation of the prob~ern. Let us assume that the middle cross-section QCRa of 
the plate is bounded by a simple contour as1, smooth (class cm) everywhere except at the 
corner point 0 with aperture angle 2a E (0, 2nl. We shall consider the three-dimensional 
problem of the '*pure" bending of a plate Qh = g X (-I/&, '/&clamped along the side surface 

nV,.V,m (A, m) + (~1 + A) V,V,.u (h, x) = 0, x E Q,, (1.1) 

da) (u; h Y, ,‘/&) = ,‘/ap (y) e(3), y = (z,, z.J E n (1.2) 

II (h, z) = 0, t E Sh = an x (-V,h, ‘l&h) (1.3) 

Here h, p are the Lam& coefficients, e(j) is the unit vector in R3, U = (U,, =a, us) is 
the displacement vector, p is the transverse load, o(3) = oe@), o (u) is the stress tensor with 
Cartesian coordinates ~$a(& We will scale the characteristic dimension of the region to 
unity, in which case h will be a small positive dimensionless parameter representing the 
relative thickness of the plate. 

Next we shall determine the first few terms of the asymptotic representation as h-+0 
of the solution lb (h, z) of problem (l.l)-(1.3). 

2. Pretinirmrr~ data. We know that the principal term of the asymptotic approximation 
to the solution of the problem of the bending of a plate is the function 
satisfying the problem 

w" E W,Z(Q), 

DIAvewo (y) = p (y), y E 51; w” (y) = (hd’lan) (y) = 0, 

Y E a51 

& = ‘l,lr (I( + 4 (2P + W’ 

(2.1) 

in which L?, represents the reduced@ = ifcylindrical rigidity of the plate, &s is the Laplace 
operator and n is the outer normal. Wore accurately, the deflection 3 is used to re-establish 
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the three-dimensional displacement vector 

uo (h, I) = h-% (h, h-43, Au) w0 (Y) i-hw (Y, h-4,) 

while the differential operator 3 =(Q '1, %, 83) and vector W” have the form 

3, (h, z, V,) w = UJ + '/av (1 - Y)-’ (9 - 'I& A"w, E, (h, z, V,)w = 
hz {ha [l/e (1 - ~)-~((2 - v) za + '/* (v - 6))l A, - 1) May, 

W,O (y, z) = [4p (1 - v)l-'('i, (3 - v")(z2 - 1112) - (1 - v") (z'- USO)}p 

WkO (y, 2) = 0, li = 1, 2, Y = h [2 (p + Q-1 

(2.2) 

(2.3) 

The stresses calculated in terms of the displacements (2.2) are: 

(2.4) 

(2.5) 

(bj, k is the Kronecker delta). The following estimate which follows from the asymptotically 
exact Korn inequality, substantiates the principal term of the asymptotic expression 

ll(d+h)-2(U8-UUao)Il+ h-lll(d -t h)-l(u,- uj”)ll+ II(d + h)-‘V,(U,-U,o)ll+ (2.6) 
h-' II v, (“j- uj”) II + h II td + h)-l a (us - kg’)/& II + 
II (d + h)-l d (“j - Uj’)/dG II + he1 II 'Jjk (U) -dk II + 

II Cd + h)-l(u~s (u) - Ojs”) II+ h-l II 633 (u) - ~33’ II < ch-’ II P; & (Q) II 

Here II. II is the norm in L, (Q/Jr d (Y) is the distance between the point y and the 
boundary 88. We stress that for the last two terms the estimate (2.6) provides very little 
information, and does not justify the asymptotic form of the stresses urn3 (m = 1, 2, 3) 
separated in (2.5). In other words, without additional assumptions concerning the differential 
properties of p and W, we cannot obtain the stresses urn3 from the approximate formulas 
(2.5), and we must put&a =o. 

If the contour &l were smooth, then /l-5/ the solution of problem (l.l)-(1.3) could be 
expanded in the asymptotic series 

u (a 2) - jao hj-3 {E (h, h%,, Vv) wj (y) + 
cm 

VW’ (y, h-‘s,)l + x (y) 2 h~-w (h-%2, h%,, s) 
*=2 

(2.7) 

in which d are solutions of problems of the form (2.1) with certain right-hand sides z Y 
W’(y, z) is the vector function with zero average value over r E (--'/,, r/J for all y E 51, X 
is a smooth truncated function equal to unity near L?Q and equal to zero outside the 
neighbourhood of the contour &l where the local coordinates II (normal) and s (tangential) 
are defined and up are solutions of the problem of the deformation of a half-strip with a 
clamped end (boundary layer-type terms) vanishing exponentially at infinity. 

The second terms of the asymptotic form (for a smooth contour) were calculated in /6/. 
It was found that v0 = vl= 0, and w1 is a solution of the problem 

Ayau9(y) = 0, ~czQ; w'(y) ==O, (awl/an) (y) =c(v)AywO(y), yEaS2, (2.8) 

where c(v) is a quantity depending on Poisson's ratio v only, and positive for vE(0, "/*) 
(the graph of the function v MC(Y) is shown in Fig.2 of /6/). The solution v2 of the 
boundary layer-type is specified as follows: 

u2 (nr, rlz, s) = 0, (nl, rlz), X, (rl,, n,), 0) A@ (s, 0) (2.9) 

The vector X represents the solution of the problem of the plane deformation of the half- 
strip II = (0, -km) X (-‘/$, ‘/.J vanishing at infinity; there are no mass forces, the sides are 
stress-free and X, = --c (Y) qa, X3 = Vgv (1 - Y)-’ (qa2 - l/l*) - b (v) at the end (9 : 1)1 = 0, 1 ‘1s I < 

‘/,I, b (4 is a certain quantity (see Sect.3 of /6/ for more details). If we now take into 
account the named terms w< u2 and denote the expressions analogous to (2.2) and (2.4), 
(2.5) by u1 and o?nTll, respectively, then the inequality (2.6) will remain valid after 
replacing the superscript 0 by 1 and the right-hand side by cJ-~(II p(I + II V,pl/) (in this case 
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the estimate of the difference =ss (u) - Go) becomes meaningful). 
In the case when a corner point lies on the boundary of the region, the relation WOE 

W,z (9) \ WZ(Q) is possible by virtue of the singular nature of the solution at the corner 
tip. But in this case the expression ojz from (2.5) will not belong to &(&) and this 
is absurd. As usual, in such situations an additional boundary layer appears near the rib 
0 =o x (-V&, I/&) at the side surface of the plate. This phenomenon is discussed in 
Sects.4 and 5, and the next section will deal with the formulation of the necessary results 
concerning the behaviour of solutions of plane problems (2.1) and (2.8) near the tip of the 
corner. 

3. A corner point. We shall assume, for simplicity, that the load near the point 0 is 
zero. The power solutions of the Dirichlet problem for the biharmonic equation within the 
angle Kc = {y:r>O, (6 /<a} have the form :+**'I'+ (6), where r, 6 are polar coordinates and 
A+ are the roots of the equation 

A sin 2a & sin 2Aa = 0 (3.1) 

(the roots A_ = &I for a# Ypn,a*, x and A* = 0 are excluded from our discussion; here 
a, E (r/,x, Vm) is a solution of the equation tg2a = 2a). The distribution of the roots of 
Eqs.(2.1) in the complex plane relative to the quantity u is known (see /17/ et al). If 
a~(0, 1/8n), then we have no roots within the strip r (f)={h~ C: 1 Re h I< 1). If on the other 
hand a fz (V*n, nl, then r (1) contains a pair of real roots _+A+(a) and another pair 
&A_ (a). is added to them when aE (%+,sl.In what follows, we shall denote by r (la) the 
largest strip containing only the roots of Eq.(3.1) named above. 

The angular parts ul, are given by the equations 

Y+ (A, 0) = C, (A) (cos l(A + 1)~) cos [(A - i)61 - coa [(A - (3.2) 
1) al cos [(A + 1) 01) 

Y_ (A, e) = C_ (A) {sin [(A + 1) ccl sin [(A - 1) 01 - 

sin [(A - 1) al sin ((A + 1) 61) 

Theexplicitform of the normalizing factors C+(A) will not be used (except in the case 
of a = n which will be discussed at the end of this section). We shall use only the follow- 
ing fact /8/: by virtue of the choice of the factors mentioned above the functions C,(Y) = 

r'+**(@Y,+ (4 (a), 6)and 2, (Y) = rl-h*((a)Y* (-A+ (a), 6) can be normalized in the following 
manner: 

+ A,U* - Z, + A+!&} lIsb de = 0;’ 

(a bar denotes complex conjugation, and its presence is not essential for real A* (a) or, 
in particular, when a E (V,n, nl). We stress that the left-hand side of identity (3.3) is 
independent of 6>0. 

If the angle a is small, then the solution w" will belong to 
l/m) I 

W,* (a). When a E (0, 
inclusion WOE Wa3(S2) will hold and the following representation will hold for a~ 

(Van, nl : 
wo (Y) = p*u* (Y) + 0 (r’+l,)* r -0 (3.4) 

where we have assumed that c_ = 0 for a E (I/.$, a*). In the case aE ('/,a, xl we have a non- 
trivial solution 5, E W?(Q) of the homogeneous problem (2.1), with the asymptotic 
representation 

5* (y) = 2, (y) + 0 (r'+*+(a)), r+ 0 (3.5) 

The same solution L. will fall into W,l(Q) if aE(a,. nl. The following formulas /8/ 
hold by virtue of the normalization of (3.3): 

Cf =jP(y)C*(Y)dY 

For a convex angle K, the solution w1 05 problem (3.8) is contained within the 
space W,'(Q). If on the other hand the angle is re-entrant (i.e. a>V2n), 
will certainly have no solution belonging to 

problem (2.8) 
WzZ(Q) when c+ # 0. In a wider class W,'(Q) 

(3.6) 
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we have no theorem of uniqueness and the solution has to be obtained from the asymptotic 
representation 

if3 (y) = =i; c*w* (y) + 0 (r=Jw)), r-0 
It (<i.7) 

Here w*(y)= rA*-'"'@*(8) is the solution of the problem within the angle Ka 

AV2W* (y) = 0, y cz K, (3.8) 
W, (Y) = 0, (a&@n) (Y) = c (v) A@, (Y). YE aA% \ 0 

According to the general results /9/ the solution (3.7) of problem (2.8) exists and is 
unique, and the model problem (3.8) has a solution of the form shown only if the number 
&r (a)--1 does not coincide with one of the roots of Eq.(3.1). The latter demand is satisfied 
for a E (Van, n) , and is violated when a = x, since A*(n)= 'iz, Therefore, the corner 
point with aperture angle 2n (a crack in the plate with clamped edges) needs additional dis- 
cussion. 

When a = n, the special solutions u& and .Q will have the form 

u, (y) = A++.+ (B), u_ f?j) = -Af'+$L fe), A = fz+L)-l1/2 

2, (y) = 3B7+,. (0), Z_ (y) = -Br%p_ (O), B = V,n-” (2 - Y) v’z 

I++ (0) = cos v,e +,V3 cos V&, -I/X. (0) = sin l/,8 + sin V.&l 

(3.9) 

(see e.g. IlO, 71, and compare with (3.2) and (3.3)). We can confirm directly that the 
following functions are solutions of the model problems (3.8): W+ = 0 and 

W_(y) = n-1c(v)Ar'l~[$_(8)ln r -+- 8 (cos~/,~ - COS"/~ 0)] -t_ &+q_(q 
(3.10) 

A, = -(4np)-'c (v)l/z 

We note that solution (3.10) was obtained apart from the linear combination A&- -t-B&.,. 
the coefficient B, was made equal to zero in order to preserve the property that the function 
is odd in the variable 6, and the coefficient -&was chosen from the condition (V, W_)a = 
-8c(v)A21n6 (this relation was used in deriving formula (6.4)). Thus by virtue of /9/, 
after changing the form of the function W_ (a linear dependence on In r) , all that was said 
about the solution w1 in the case of aE(--'l&n), also remains true for a = n. 

4. Bounda~g tiger near the rib w- We introduce near the point 0 the "rapid1 variables 
9 = @II, rltt %) = @t's and write formally h = 0. As a result, the plate Qh will be trans- 
formed into a sector of the layer iu, X f--'i,,'/&. According to the method of matched 
asymptotic expansions we should construct the solutions Y* of the homogeneous problem of 
the theory of elasticity in the "wedge" KG X (--‘/x7 ‘is), with the following asymptotic 
representation at infinity: 

y* (q) = ewT* (q’) + 0 (p’+“q, p -+ m 

(pi' = (VI, -fle)* P = 111’ I = bh2 + %37 
(4.1) 

The solutions named above transform the elastic energy functional into infinity. From 
/l.l/ it follows that these solutions exist and are unique, and formula (4.1) admits of the 
following refinement: 

(4.2) 

Before explaining the notation adopted in (4.2), we stress that the algorithm for 
constructing the expansions (4.2) is in fact the same as in the case of a thin plate. The 
fact is, that the form of the expansion of the solution of the elliptic problem in the region 
8 is governed by the form of the set MR cut out by the sphere {n: in [ = B) from $1. When 
R-+w, the set MS should be interpreted as a thin region whose length is of the order of 
o(B) and whose width is of the order of O(1). 
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The first group of terms in (4.2) is completely analogous to the terms of the first 
series of (2.7). The operator R is given by formula (2.3), u+, W* and 2, are functions 
described in Sect.3 and k*(a,v) is a quantity depending only on the aperture angle a of Km 
and Poisson's ratio v (in all probability k,(a, v) can only be calculated using a digital 
computer). 

The second group of terms in (4.2) represents the boundary layer-type Solution: n(*a) = 
(+hsina -~)~cesa, Q) are Cartesian coordinates in the planes parallel to the on, axis 
and perpendicular to the side edges of the wedge, Xis the solution of the problem in the 
half-strip n appearing in (2.9) and vanishing exponentially at infinity, x0 is a smooth, 
even truncated function and x0(t)= 1 near the point t= 0. 

We shall deal separately with the problem of estimating the residue which includes terms 
of order 0 (r'+**@)-*) and 0 (r'-a*(a)-l) ( smooth type solutions following the functions lJ*, W+ 
and .?&, respectively), smaller terms of the boundary layer, and solutions of the form 

&-"*y f corresponding to the other roots A* of Eq.(3.1) (here Re A+> Re A*(o)>@ 
Thus the indices v+(a) are subject to the conditions 

y*(a)> max {Ai (a) - 1, 1 - L) (4.3) 

If a E (--Van, nl (or a E [a,, nl), then the first expression on the right-hand side 
of (4.2) will determine the principal term of the asymptotic form of the displacement field 
Y+ or Y-), and the solutions of boundary layer-type are O(ra*'a)-l) and can be neglected. 
However, after a single differentiation, the last solutions will retain their order and will 
therefore be included in the principal part of the asymptotic expression (as p-+00) of the 
stress and deformation fields. In the case when a E (0, Vzn) (or & E (0, a*) \ {Vzn)) , the 
term containing 2, (or Z_) can be eliminated from the expansion (4.2). Since Re A*(a)> 1, 
it follows that since the value of the residue increases, the presence of the function 2, 
vanishing at infinity does not provide any information about the asymptotic form of the 
solution. It is clear that this term will be restored in the expansion after the minor terms 
have been taken into account. (The characteristics assigned to the quantities in (4.2) are 
identical with the further results of Sects.5 and 6, referring to the effect of the corner 
point on the stress-deformation state of the plate). Finally, we note that when the quantity 

A+ (N-2 or A*(a)- 1 is identical with the root of E,q.(3.1), then an additional 

logarithmic multiplier may appear in the expression pv*'a' (compare with (3.10)), which 
shall not show, which will increase the value of the exponent Y* (a) by a small, positive 
amount (if there is no In p, then formula (4.3) will have the equality sign). 

5. Matching soZutions of different types. The effect of the three-dimensional nature 
of the stress-deformation state near the rib 0 c s, will be reduced to the fact that the 
solution u&z) of problem (l.l)-(1.3) will be generally represented, in a small neighbour- 
hood of o, by the sum 

Y&r) = c+h*+(+*Y+(Pz) + c-h*-@WY-(h-'x) (5.1) 

The coefficients c+ are taken from the expansion (3.4) of the solution of the plane 
Kirchhoff problem (2.1). The presence in (5.1) of small multiplying factors /&'+"fW shows 
that the degree of influence of the three-dimensional boundary layer can vary, depending on 
the magnitude of the angle a. For example, when a= (O,V,n) the two-term asymptotic ex- 
pressions (j = 0, 1 and 4 = 2 in (2.7)) constructed in /6/ can be corrected by terms of the 
same series (2.7) for j = 2, q = 3, and the three-dimensional nature emerges in even lower 
terms. 

In order to confirm what was said before and to clarify the degree of influence exerted 
by the boundary layer (5.1) in the case of a E (V,n, nl, we must determine the global 
a.SyIiIptOtic approximation to the solution of initial problem. With this in mind, we shall 
employ a version of the method of matched asymptotic expansions (see /12, 13/ etc.). 

We denote by Y"(h, a) the sum of terms on the right-hand side of (2.7) with the indices 
j -0,l and g=2. Let us first have cE('/G, n) (we recall that formally it is assumed 
that c-= 0 in (3.4) for aE('l,n, a+)). Comparing relations (3.4), (3.7) and (2.9) with 
expansions (4.2) (the third term in curly brackets was transferred to the residue) we find, 
that within the intermediate zone r- hx, the quantities p((h, 5) and Y&s) will, on 
the whole, be identical. The difference will be detected only in the lower terms of the 
expansions. By taking into account in (4.2) terms containing z*, we are obliged to bring 
into the representation smooth-type solutions which have the following expressions serving 
as asymptotic representations as r-to: 

p-lc&A*(a)-ek* (a, v) 2, (h-‘y) = haA*(a)-3p-lc*k+ (a, v) 2, (y) (5.2) 

We recall the comments accompanying Eq.(3.5) indicating the solutions 5* E W*l(Q) of 
the homogeneous problem (2.1), and put 
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Ii (h, 2) = Y” (h, cc) + p-1 pa” ca)-acfktt (a, v) 8 (h, h-kc,, V,) & (y) (5.3) 

Now, by virtue of (3.5f, V and Y will be matched using the last terms from within the 
braces in (4.2). 

Let us now choose the global asymptotic approximation U. Since the solutions at the 
corner tip are singular, it follows that we must change the field (5.3) containing the terms 
ESup,Elw', "6* and u*. In the function u'" of the plane boundary layer-type given by the 
formula (2.9), we replace A,w" by the difference 

Ap* iv) - xo 09 2 c&u* (Y) (.>A} 
I 

The subtrahend removes the singularitiesof the solution Up isolated in (3.41, and 
their effect is transferred to the function (5.1) of three-dimensional boundaxy layer-type. 
Note also that, in order to make the expansions 15.3) and (5.1) compatible, we must make the 
choice of the cut x in (2.7) more precise; near the point y=!J the equality r(y) = x0 (0 - 
CC)+ x0(8+ CCJ must be observed (compare with (4.2) k. 

The expression St@ is determined in accordance with (2.3) and containsterms Nk@, 
where NkW,t are differential operators of orders k=0,...,3. If kg& we replace 

Nxd and El8 by NC@ - Xo~+Nkv& analogous to (5.4). If on the other hand k= 3, we 

replace NKWO by 

(1 -xoWr)) nk (V,)@'(Y)-xo(r) 2 c N (V )a,(~) 1 *ib Y (5.5) 

In other words, just as before for @, some of the singular components of the field Em? 
will refer to the three-dimensional boundary layer. Moreover, the difference ap=up- 

~~);c~lJ* belongs to WBs(Q), but may not necessarily fall within Ws4(Q). In the latter case 

we cannot have the inclusion NlwOss W,‘(Qd which is necessary, but this can be corrected by 
multiplying by the cut-off which is zero for small h-‘r. We will treat the solutions w' and 

4 in the same manner. By virtue of 13.7) and 13.5) the functions w*= WI-- ~o~c+W* and 

i;,= &-z&S* are contained within w,~(Q), therefore we can prescribe for the expressions 
N&,NxS+ a replacement of the type (5.4) for k= 0.i and of the type (5.5) for k= 2.3. 

Let us denate by v(h,z) the right-hand side of Eq.(5.3) in which the above transformation 
has been carried out, and by Y&,X) the sum (5.1) multiplied by the truncation Xa (r). and 
let us write U= V+ Y. This defines the global approximation to the solution of problem (l.l)- 
(1.3). We stress that the complex construction given here is needed only for the strict 
formulation of the estimate of the residue. Use of different expansions for different zones 
is asymptotically justified. Outside the small neighbourho~ e of the rib the approximation 
(5.3) is appropriate, and within this neighbourhood we use (5.1) - 

If we now substitute, as in /6, 14, 15/, the function U obtained earlier into the Eqs. 
(1.1)-(1.3), calculate and estimate the resulting discrepancy, and use the Kern inequality, 
we obtain the following relation: 

in which o<e is arbitrary. The weighting factors are included in the norm of the function 
p in order to ensure /9/ the validity of expansions (3.4) and (3.7). Estimates of the 
residues in the expansions should also be rewritten in terms of the Sobolev weight classes 
191. We will ignore this fact in order to simplify the presentation. Besides, the (non- 
obligatory) assumption concerning the load p given at the beginning of Sect.3, exhausts all 
questions. 

In the case when CL= n (a crack) the asymptotic form is modified slightly by virtue of 
the presence of lnp=In;-11nh in the function W_(I)') (see (3.10)). The form of the initial 
formula (5.3) will be changed thus: 
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All subsequent transformations will remain the same, but the factor b-t from the right 
of (5.6) will now be written as b+* (due to the appearance of logarithms; see Sect.4). 

We will finally discuss the case a+~(0,'/&, when the construction of the asymptotic 
form is simplified due to the possibility of transforming the boundary layer terms to the 
residue. If the solutions Up and U? axe found, respectively, in the spaces W*' (Q) and 

wza (G) (the angle o is small), then the stresses calculated in terms of the functions d 
and wlusing the formulas (2.4), (2.5) (see Sect.5 of 161) will belong to Lo (Qd. This means 
that the quantity (5.3) itself can be used as the asymptotic approximation and the inequality 
(5.6) will hold when U= V. If, on the other hand, I@ lies in Was(a) (when fx E (0, V*n) , 
this is always true) but not in W~4(G),then taking into account in (5.3) the contribution 
of the solution WI, we must multiply by truncation ~-xo(b-'rP the terms of expansion of 
the function N& emerging from the class WeI (COIIIpare with (5.5)). The resulting 
error here is of the order of o(h"). 

6. lJiscussion. If the side surface Sh is smooth, the effect of the plane boundary 
layer away from the edge of the plate will be reduced mainly to replacing the Kirchhoff 
solution h-V by the sum h~~i-h~‘~~ and the error of the next power will have the form 
h-k+. From Eq.(5.3) it follows that an additional contribution of the corner point of the 
contour aCJ is made by the following approximation to the bending of the plate: 

h-w + h-awl + p-1 1; h.a”f(a)--c*k* (a, v) c* 

When a6Z (0, '/&, the inequality Re &(a)> f holds, i.e. the third expression in 
(6.1) is weaker than the quantity h-'w? In the case of aCZ('/$C, n) (a re-entrant angle) 
at least one of the indices 2&t (a) - 3 is smaller than -i, and this means that the 
perturbation caused by the corner point is stronger than h-‘w2. However, the term h-awl, 

constructed in /6/, serves, as before, as the main correction. Finally, in case of a crack 
we add to the sum (6.1), in accordance with (5.7), the term ?$_c(v)[p (I- ~)l-~~_h-~ lnh, which 
in fact represents the main perturbation of the Kirchhoff solution h-SW”. 

Let us find the first term of the asymptotic expression for the potential energy of the 
deformation of the plate 

cl,, (4 = E,(u) - -4 = --/aA, = -% 2s P (Y) ua (h, y $-z/ak) dy 
iQ 

(6.2) 

Here Ek(n) 
Substituting into 
and recalling the 
n): 

is the elastic energy functional and Ah is the work done by external forces. 
(6.2) the approximation obtained for the solution of problem (l.l)-(1.3) 
estimate (5.6) we conclude that the following relation holds for aE(r/,n, 

uk (4 = - ‘f&-* f p (w” + hd + 2 p~1h8”*‘a’c&~ (a, Y) ?&) dy + 0 (h-1) 
Q f 

Using Eqs.iZ.1) and (2.8) and integrating them by parts in 51 and applying the relations 
(3.61, we obtain the following asymptotic formula: 

Uk (4 = - ‘#caEl (w’=)+ ‘/ah-ac(~)D~ f ~A&'(y)~2 ds,- 
a% (6.3) 

1/~~~1~hzA*~~~~akj:(a,v)~~8 + O(@) 
f 

Here Rk(W') is the elastic energy of deformation of the Kirchhoff plate. 
According to what was said before, when oE(0, ‘/,x), the sum over _& vanishes from 

the asymptotic expression. If on the other hand cc=n, then by virtue of (3.41, (3.9) the 
integral along the contour dsd will be divergent and relation (6.3) will need correcting, 
Let us carry out the corresponding calculations (they repeat, basically, the derivation /a/ 
of Eqs.(3.6)). Let us put a(6) = {y E n :r> 6) and r(6) = {YE&~ : r> 6}, where ,6 > 0. 
Remembering the special normalization of the corner part of (3.10) mentioned at the end of 
Sect.3, we find, using Green's formula, that 

11;'p&dr =lim 
b-o s 

wfAyzw=dy = 
Q(b) 

lim 
s ( b-a @Q(b) 

wlA,~-$$A,w“+ ~Ayw'-w~$$ 



530 

‘,f {(I@, LL.96 --c (V) j 1 A@(y) I2 ds,} = 
I’(6) 

--~(v)~h~{8c_~A~lnS -t 1 1 A@(y)$ds,} I --c(v)I,(w) 
r(d) 

Since by virtue of (3.4) and (3.9) 1 A,wO(y) I2 = 4r-' (AC- sin '1,8)' + 0 (r-x), it follows 
that the limit L(w") exists. This means that, taking into account the term in (5.7) which is 
additional compared with (5.3), we obtain 

u,,(n) = - '/2h-3E,(UP)-1/~~-1h-zlnhc(~) (I - Y)-1c_2 + 

'izh-' [c (v) D,L (w”) - p-’ ; k, (n, v) c&z] + 0 (h-‘-e) 
(6.4) 

We stress that in order to find all terms of the asymptotic formula (6.3) or (6.4) which 
sharpens the classical formulas, we only need information concerning the solution w0 of 
problem (2.1), and the values of three quantities c(v) and krt (a, v) characterizing the 
boundary layers. Just as in Sect.8 of /6/, we can obtain similar expressions for the eigen- 
frequencies of flexural oscillations of the plate. 

We note, finally, that the method of matched asymptotic expansions (/12/ et al) enables 
us to construct a complete asymptotic series for solving problem (l.l)-(1.3) in the case of 
a load p smooth on a. Unlike series (2.7), this series contains terms of the three-dimen- 
sional boundary layer-type. Moreover, the power indices h are not integers and represent 
linear combinations (with integer coefficients) of the roots of Eq.(3.1). 
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